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1 Introduction

This is a compilation of probability problems that I’ve come across in my early days of
learning the subject. The references for this compilation are Durrett’s “Probabiliy The-
ory and Examples” and Morters and Peres: Browniaon Motion. Any numbered theo-
rems/exercises/pages in this compilation refer to Durrett’s book unless we are in the Brown-
ian motion section, in which case I am referring to Morters’ and Peres’ book. Some problems
are also taken from these books.

2 Warm up Problems - Measure Theory

Problem 1
Consider the product of three fair-coin toss probability spaces. How many outcomes and
how many events are there on this space? Show that the number of heads in three tosses is
a random variable defined on this space.

Solution:
The set of outcomes for a fair-coin toss is Ω = {H,T} and the events are
2Ω = {{}, {H}, {T}, {H,T}}. The product of three fair-coin toss probability spaces will have
the following set of outcomes: Ω = {HHH,THH,HTH,HHT, TTH, THT,HTT, TTT},
which contain 8 elements. The set of events in this example contained 2|Ω| = 28 = 256
events.

The number of heads in three tosses is a function X from Ω → {0, 1, 2, 3} ⊂ R. Since
the set of events F is the power set of Ω, X−1(i) ∈ F for i ∈ {0, 1, 2, 3} so X is measurable.
Therefore the number of heads in three tosses is a random variable.

Problem 2
Show that the Borel σ-field on R is the smallest σ-field that makes all continuous functions
measurable.

Solution:
Let A be the collection of open sets of R in the standard topology. Then for any contin-

uous function f : R→ R, and for any A ∈ A, we have that f−1(A) ∈ A ⊂ σ(A). The Borel
σ-field on R is the smallest σ-field on R containing A. Finally, by theorem 1.3.1, f is mea-
surable. We have shown that the Borel σ-field makes all continuous functions measurable,
and that it is the smallest one to do so.

Problem 3
Just because A generates a σ-field F , the values of P on A do not in general determine its
values on F . To show this, give an example of as measurable space (Ω,F), a collection A
and probability measures P , Q so that

(i) P (A) = Q(A) for all A ∈ A,
(ii) F = σ(A),
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(iii) P = Q.

Note that this can be done on a space with four outcomes.

Solution:
Let Ω = {a, b, c, d} and A = {{a, b}, {b, c}}.

Then
F = σ(A) = 2Ω

Let

P =
1

2
(δa + δc), Q =

1

2
(δb + δd)

so

P ({a, b}) = Q({a, b}) = P ({b, c}) = Q({b, c}) =
1

2

So far conditions (i) and (ii) have been satisfied. But P 6= Q since P ({a}) = 1
2
6= Q({a}) = 0.

Problem 4
Given an arbitrary collection of subsets A of Ω, prove that there exists a unique smallest
σ-algebra σ(A) containing A.

Solution:
let Ω be a set and let A ⊂ 2Ω. We will prove that there exists a unique smallest σ-algebra
containing A.

claim: The intersection of a collection of σ-fields is a σ-field.

Proof. Let Ω be a set and let (Fi)i∈I be a collection of σ-fields on Ω, where I 6= ∅ is an
arbitrary index set.

first property

Since Ω ∈ Fi ∀ i ∈ I we have that Ω ∈ ∩i∈IFi.

second property

Let (Ej)j∈N ∈ ∩i∈IFi. Then:

(Ej)j∈N ∈ Fi ∀ i ∈ I

So ⋃
j∈N

Ej ∈ Fi ∀ i ∈ I

Hence ⋃
j∈N

Ej ∈ ∩i∈IFi

Third property
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Let E ∈ ∩i∈IFi.Then:
E ∈ Fi ∀ i ∈ I

So
Ec ∈ Fi ∀ i ∈ I

Hence Ec ∈ ∩i∈IFi.

Using this claim, we can proceed to the proof of this problem.

Proof. : We begin by showing existence.

Let B = {C : C is a σ-field on Ω containing A}.
since 2Ω ∈ B, B 6= ∅. By the claim, ∩C∈BC is a σ-algebra and since A ∈ C ∀ C ∈ B,
A ∈ ∩C∈BC We have shown that D1 ⊂ D2. Symmetrically, we can show D2 ⊂ D1 and so
D1 = D2.

Next we show uniqueness. Suppose D1, D2 satisfy the properties of σ(A). Let A ∈ D1.
Then A ∈ C ∀C ∈ B, meaning A ∈ ∩C∈BC and so A ∈ D2.

Problem 5
Show that in the definition of “probability measure P on a measurable space (Ω,F)”, we
may replace “countably additive” by “finitely additive, and satisfies:

if An ↓ ∅ then P (An)→ 0.”

Solution:
consider a probability space (Ω,F , P ). First we show that countably additive implies

finite additivity and satisfies

if An ↓ ∅ then P (An)→ 0

Proof. Suppose (An)n∈N are disjoint sets in F such that there exists an integer m such that
An = ∅ ∀n > m. Then clearly

P (
m⋃
i=1

An) = P (
⋃
i∈N

An) =
∑
i∈N

P (An) =
m∑
i=1

P (An)

and so P is finitely additive. Next suppose An is decreasing to the empty set. That is:
An ⊂ An+1 and An ↓ ∅. Let A = ∩i∈NAi = ∅ and Cn = An\An+1.

then An is the disjoint union (∪k≥nCn) ∪ A = (∪k≥nCn). so

lim
n→∞

P (An) = lim
n→∞

(P (A) + P (
⋃
k≥n

Cn)) = lim
n→∞

(0 +
∑
k≥n

P (Cn))

by countable additivity and using that A = ∅. The sum on the right is a tail of a convergent
sequence, so it goes to 0 as the limit goes to infinity. therefore: limn→∞ P (An) = 0.
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next we prove the other direction: let (An)n∈N be disjoint sets in F . Let Cn = ∪i≥n+1Ai.
Then ⋃

n∈N

An = A1

⋃
A2

⋃
...
⋃

An
⋃

Cn

so

P (
⋃
n∈N

An) =
n∑
i=1

P (Ai) + P (Cn) (1)

by finite additivity. Note that Cn+1 ⊂ Cn and since (An) are disjoint, ∩i≥1Cn = ∅ so
limn→∞ P (Cn) = 0 and so countable additivity follows from (1) by taking the limit as n goes
to infinity.

Problem 6
Let B be the field of finite disjoint unions of intervals (a, b] ⊂ R. For B ∈ B define:

P (B) =

{
1 if (0, ε) ⊂ B for someε > 0

0 otherwise

Show that P is finitely additive but not countably additive on B

Solution:
We first show finite additivity. Let A1, ..., An ∈ B. There are 2 cases.

Case 1: P (∪ni=1Ai) = 0

then @ε > 0 s.t. (0, ε) ⊂
⋃n
i=1Ai. This means that @ε > 0 s.t. (0, ε) ⊂ Ai ∀i ∈ {1, ..., n}

since Ai ⊂
⋃n
i=1 Ai ∀i ∈ {1, ..., n}. Therefore P (Ai) = 0 ∀i ∈ {1, ..., n} and we have that:

P (∪ni=1Ai) = 0 =
n∑
i=1

P (Ai)

.

Case 2: P (∪ni=1Ai) = 1

then ∃ε > 0 s.t. (0, ε) ⊂
⋃n
i=1Ai.

claim: ∃!j ∈ {1, ..., n} such that ∃ε0 > 0 and (0, ε0) ⊂ Aj

Proof. We begin by proving existence. suppose existence is not true. i.e. suppose ∀ε0 > 0
and ∀j ∈ {1, ..., n}, (0, ε0) 6⊂ Aj. By the assumptions in the problem, each Aj can be written
as a finite union of intervals Aj = (a1

j , b
1
j ]∪ ...∪ (a

nj
j , b

nj
j ]. Since ∀ε0 > 0 and ∀k ∈ {1, ..., nj},

(0, ε0) 6⊂ (akj , b
k
j ], it is clear to see that either akj > 0 or (akj ≤ 0 and bkj ≤ 0) ∀k ∈ {1, ..., nj}.

Therefore we can find an εj > 0 such that (0, εj) ⊂ (akj , b
k
j ]
C ∀k ∈ {1, ..., nj} meaning

(0, εj) ∩ Aj = ∅. Finding such an εj for each Aj, and letting ε = min(ε1, ..., εn), we see that

(0, ε) ∩ (
n⋃
i=1

Ai) = ∅
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which contradicts the assumption that P (∪ni=1Ai) = 1.

So far we have proved existence of an Aj such that P (Aj) = 1. All that is left is to show
that there is only one such Aj. Suppose ∃Aj 6= Ak such that P (Aj) = P (Ak) = 1. That
means ∃ εj, εk > 0 such that (0, εj) ⊂ Aj and (0, εk) ⊂ Ak. This implies that (0,min(εj, εk)) ⊂
(Aj ∩ Ak) contradicting the requirement that Aj and Ak are disjoint.

Therefore there exists only one Aj such that P (Aj) = 1. Finally this means that

n∑
i=1

P (Ai) = 1 = P (
n⋃
i=1

Ai)

Next we prove that P is not countably additive. Consider the set (−1, 1]. Clearly
P ((−1, 1]) = 1. Now let A0 = (−1, 0] and An = ( 1

n+1
, 1
n
] ∀n ∈ N. Now it’s clear that

(−1, 1] is the disjoint union:
∞⋃
i=0

Ai

. But none of the sets Ai contain an open interval of the form (0, ε) for some ε > 0. Therefore:

∞∑
i=0

P (Ai) = 0 6= P (
∞⋃
i=0

Ai)

.

Problem 7
Suppose that B ∈ σ(A) for some collection A of subsets. Show that there exists a countable
subcollection Aω so that B ∈ σ(Aω)

Solution:
Suppose σ(A) is a σ-field on Ω for some collection A. let:

F = {A ∈ σ(A) : ∃ countable subcollection Aω of A such that A ∈ σ(Aω)}

We will show that F is a σ-field. Let E ∈ F . Then ∃ countable subcollection Aω of
A such that E ∈ σ(Aω). But this means Ec ∈ σ(Aω) and so Ec ∈ F and E ∪Ec = Ω ∈ F .

Next suppose (Ei)i∈N ∈ F . Then there exists countable subcollections Aωi such that
Ei ∈ σ(Aωi) ∀i ∈ N. But a countable union of countable sets is countable, so

Ei ∈ σ(
⋃
i∈N

Aωi) ∀i ∈ N

which means: ⋃
i∈N

Ei ∈ σ(
⋃
i∈N

Aωi)
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and so ∪i∈NEi ∈ F . We have just shown that F is a σ-field. But

A ⊂ F ⊂ σ(A)

and so F = σ(A). Finally to answer the problem, that means B ∈ σ(A) = F and so we are
done.

3 Tricky Probability Spaces

Problem 8
Find a probability space (Ω,F , P ) and events A1, ..., A5 ∈ F so that:
(i) any 4 of the events are independent, but all 5 are not.
(ii) any 3 of the events are independent but no 4 events are

Solution:

We will need the following lemma.

Lemma 1. Let Hn be a non-empty finite n-dimensional inner product space over the field
K. Suppose W = (w1, ..., wn) is a uniformly distributed random vector on Hn. That is each
wi is uniformly distributed on H ∀i ∈ {1, ..., n}. Let {V1, ..., Vk} be a set of vectors in Hn.
Define Yi = W · Vi ∀i ∈ {1, ..., k}. Here Yi ∈ K.

Then V1, ..., Vk ∈ H are linearly independent iff Y1, ..., Yk are independent random vari-
ables.

Proof. First suppose V1, ..., Vk are linearly independent. WLOG, we can assume that Vi = ei
where ei is the standard basis vector. This is because we can always rotate and stretch any
axis of our frame to correspond with a vector Vi while keeping track of what this does to W .

This means that Yi = wi ∀i ∈ {1, ..., k} by our assumption. It is clear that the Yi are
independent because each Yi is the projection of the ith component of W into H, and the
components of wi of W are independent of each other because each component is uniformly
distributed on H.

for the other direction, we will show the contrapostive. Suppose that V1, ..., Vk are linearly
dependent. Suppose the dimension of their span is 0 < m < k (if the dimension of their span
was 0, then all the vectors would be 0 vectors and the conclusion would be trivial). Again we
can rotate and stretch our frame so that we can assume WLOG that Vi = ei ∀i ∈ {1, ...,m}.
After this transformation, the rest of the vectors Vm+1, ..., Vk will have zeros in their last
k −m components. That is to say, Vm+1, ..., Vk ∈ span(e1, ..., em).

So now, Yi = wi ∀i ∈ 1, ...,m, and

Yj =
m∑
i=1

wiV
i
j
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∀j ∈ {m + 1, ..., k} where V i
j is the ith component of Vj. Now it is clear that Y1, ..., Yk are

not independent because Y1, ..., Ym completely determine that value of Ym+1, ..., Yk. That is,
given the value of Y1, ..., Ym, the value of Ym+1, ..., Yk will not be uniformly distributed but
completely determined. For example,

P ({Y1 = 0} ∩ ... ∩ {Ym = 0} ∩ {Ym+1 6= 0} ∩ ... ∩ {Yk 6= 0}) = 0

but

m∏
i=1

P ({Yi = 0})
k∏

j=m+1

P ({Yj 6= 0}) =
(|H| − 1)k−m

|H|k

where |H| is the number of elements in H.

part i) We can now proceed with the setup of the solution. Let V1, ..., V5 be vectors in F4
5

such that any 4 vectors are linearly independent. Such vectors exists, for example, consider
the collection of vectors:

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1)}

Let W = (w1, w2, w3, w4) be a uniformly distributed random vector on F4
5. That is each wi

is uniformly distributed on F5.

Let Yi be the inner product of W and Vi in F5 and let Ai = {Yi = 0} ∀i ∈ {1, 2, 3, 4, 5}.
Clearly any 4 Ai are independent because any 4 Yi are independent by our lemma and the
condition that any 4 of our 5 vectors are linearly independent.

Also note that all 5 events are not independent because the 5 vectors are linearly depen-
dent because our vectorspace has dimension 4. Using the lemma, we find that the probability
of the 5th event occuring will be completely determined by the first 4, and therefore the last
event will not be uniformly distributed and therefore the 5 events we choose will not be
independent.

part ii)

Let V1, ..., V5 be vectors in F3
5 such that any 3 vectors are linearly independent. Such

vectors exists, for example, consider the collection of vectors:

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 3, 4), (4, 3, 2)}

(This collection was not entirely trivial to find). Let W = (w1, w2, w3) be a uniformly
distributed random vector on F3

5. That is each wi is uniformly distributed on F5.

Let Yi be the inner product of W and Vi in F5 and let Ai = {Yi = 0} ∀i ∈ {1, 2, 3, 4, 5}.
Clearly any 3 Ai are independent because any 3 Yi are independent by our lemma and the
condition that any 3 of our 5 vectors are linearly independent.
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Also note that any 4 Ai are not independent events because any 4 out of the 5 vectors
are linearly dependent because our vectorspace only has dimension 3. Using the lemma, we
find that the probability of the 4th event occuring will be completely determined by the first
3, and therefore the last event will not be uniformly distributed and therefore any 4 events
we choose will not be independent.

4 Laws of Large Numbers

Problem 9
(Monte Carlo Integration). (i) let f be a measurable function on [0, 1] with

∫ 1

0
|f(x)|dx <∞.

Let U1, U2, ... be independent and uniformly distributed on [0, 1], and let:

In = n−1(f(U1) + ...+ f(Un))

Show that In → I ≡
∫ 1

0
fdxinprobability

(ii) suppose
∫ 1

0
|f(x)|2dx <∞. Use Chebyshev’s inequality to estimate P (|In− I| > a/n1/2).

Solution
(i)

First note that since f is measurable on [0, 1] and U1, U2, ... are i.i.d. on [0, 1],
f(U1), f(U2), ... are i.i.d.

Since
∫ 1

0
|f(x)|dx <∞, In

p→ E(f) =
∫ 1

0
|f(x)|dx ≡ I directly by theorem 2.2.9.

(ii)

suppose that
∫ 1

0
|f(x)|2dx <∞. Then var(f) <∞. Since f(U1), f(U2), ... are i.i.d. they

are uncorrelated.
so by Chebyshev’s inequality:

P (|In − I| > a/n1/2) ≤ E((In − I)2)

a2/n
=
var(In)

a2/n
=
n · var(f)

a2/n
=
var(f)

a2

where the second last equality comes from theorem 2.2.1.

Problem 10
If Xn is any sequence of random variables, there are constants cn → ∞ so that Xn/cn → 0
almost surely.

Solution Note that since XN are random variables, P (|Xn| > ∞) = 1. Therefore,
we can choose cn such that P (|Xn| > 2−ncn) < 2−n ∀n ∈ N. Then

∞∑
n=1

P (|Xn| > 2−ncn) =
∞∑
n=1

P (|Xn/cn| > 2−n) <
∞∑
n=1

2−n <∞

Therefore, by the Borel-Cantelli lemma, P (|Xn/cn| > 2−n i.o.) = 0. Since 2−n can be made
arbitrarily small, ∀ε > 0, P (|Xn/cn| > ε i.o.) = 0 and hence Xn/cn

a.s.→ 0 by Durrett (lines
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5-6 in page 57 ). Also note that increasing cn only helps our cause, so we can also choose
that cn →∞ if it is not so already.

Problem 11
Let X1, X2, ... be i.i.d. with distribution F , let λn ↑ ∞, and let An = {max1≤m≤nXm > λn}.
Show that P (An i.o.) = 0 or 1 according as

∑
n≥1(1− F (λn)) <∞ or =∞.

Solution since X1, X2, ... have the same distribution F , P (Xi ≤ λn) = F (λn) ∀i.
Hence

P (An) = 1− P ({ min
1≤m≤n

Xm ≤ λn}) = 1− F (λn)

Hence if
∞∑
n=1

P (An) =
∞∑
n=1

(1− F (λn)) <∞

then P (An i.o.) = 0 by the Borel-Cantelli lemma.

Else if
∞∑
n=1

P (An) =
∞∑
n=1

(1− F (λn)) =∞

then P (An i.o.) = 1 by the second Borel-Cantelli lemma and independence of X1, X2, ...

Problem 12
Suppose that

∑
P (Ak) =∞. Show that if

lim sup
n→∞

( n∑
k=1

P (Ak)

)2/( ∑
1≤j,k≤n

P (AjÂk)

)
= α > 0

then P (Ani.o.) ≥ α. The case α = 1 contains Theorem 2.3.6 in Durrett.

Solution for n ∈ N, let

Sn =
n∑

m=1

1Am

Note that for 0 ≤ α ≤ 1,

E(Sn) = E(Sn1{Sn<αE(Sn)}) + E(Sn1{Sn≥αE(Sn)})

The first term on the right is bounded above by αE(Sn), and the second term is bounded
above by E(S2

n)1/2P (Sn > αE(Sn)) by Cauchy-Schwarz. Hence

P (Sn > αE(Sn)) ≥ (1− α)2E(Sn)2

E(S2
n)

Also note that

lim
n→∞

E(Sn) = lim
n→∞

n∑
m=1

P (Am) =∞
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by hypothesis. Since Sn(ω) is the number of events in {A1, ..., An} that contain the point ω,
and lim sup An are the points ω that are infinitely many Ai, we have that

lim sup
n→∞

An = {ω : lim
n→∞

Sn(ω) =∞}

Hence for all α > 0,

lim sup
n→∞

{ω : Sn(ω) > αE(Sn)} ⊂ lim sup
n→∞

An

Therefore for 0 < α ≤ 1,

lim sup
n→∞

(1− α)2E(Sn)2

E(S2
n)
≤lim sup

n→∞
P ({ω : Sn(ω) > αE(Sn)}) by the beginning of problem 4

≤P (lim sup
n→∞

{ω : Sn(ω) > αE(Sn)})

≤P (lim sup
n→∞

An) by the above set containment

which implies

lim sup
n→∞

E(Sn)2

E(S2
n)
≤ P (lim sup

n→∞
An)

We are done once we realize that

E(S2
n) =

n∑
k=1

n∑
m=1

E(1Ak1Am) =
n∑
k=1

n∑
m=1

P (Ak ∩ Am)

and

E(Sn)2 =
( n∑
m=1

P (Am)
)2

Problem 13
Give an example with Xn ∈ {0, 1}, Xn → 0 in probability, N(n) ↑ ∞ a.s., and XN(n) → 1
a.s.

Solution Let Ω = [0, 1] and F be the σ−algebra of measurable subsets of Ω. Let P
be the Lebesgue measure. let:

Xn(ω) =

{
1 if k

2m
≤ ω < k+1

2m
, where n = 2m + k, 0 ≤ k ≤ 2m − 1

0 else

i.e. the type writer sequence. This is a standard example to show that Xn converges to 0 in
probability but not almost surely (as n→∞). Now let:

N(n) = min{i : i ≥ 2n and Xi > 0}

and note that N(n)
a.s.→ ∞ and XN(n) = 1 a.s. ∀n.
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Problem 14
Let X0 = (1, 0) and define Xn ∈ R2 inductively by declaring that Xn+1 is chosen at random
from the ball of radius |Xn| centered at the origin, i.e., Xn+1/|Xn| is uniformly distributed
on the ball of radius 1 and independent of X1, ..., Xn. Prove that n−1 log |Xn| → c a.s. and
compute c.

Solution Let

Y1 =
X1

|X0|
, Y2 =

X2

|X1|
, .., Yi =

Xi

|Xi−1|
, ...

Then Y1, Y2, .. are independent and uniformly distributed on the unit ball in R2. Hence,

1

n
log|Xn| =

1

n
log(

|Xn|
|Xn−1|

|Xn−1|
|Xn−2|

...
|X1|
|X0|

) =
1

n
log(|Yn||Yn−1|...|Y1|)

=
1

n

n∑
k=1

log|Yk|
a.s.−→ E log|Y1| by the SLLN

To find E log|Y1|, first note that for r ∈ [0, 1] and i ∈ N,

P (|Yi| ≤ r) =
πr2

π12

and hence |Yi| has probability density fi(r) = d
dr
r2 = 2r with respect to Lebesgue measure

on [0, 1]. And so

c := E log|Y1| =
∫ 1

0

log(r)f(r)dr = −1

2

and we are done.

Problem 15
Let X1, X2, ... be i.i.d. and let Sn = X1 + ... + Xn. Let p > 0. If Sn/n

1/p → 0a.s. then
E|X1|p <∞.

Solution Suppose
Sn
n1/p

a.s.−→ 0

Then,
Xn

n1/p
=
Sn − Sn−1

n1/p
=

Sn
n1/p

− Sn−1

(n− 1)1/p

(n− 1)1/p

n1/p

a.s.−→ 0

This means that
P (|Xn| > n1/pi.o.) = 0

Hence
∞∑
n=1

P (|Xn|p > n) =
∞∑
n=1

P (|Xn| > n1/p) <∞
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by the contrapositive of the second Borel-Cantelli lemma, and the assumption that X1, X2, ...
are independent.
Finally, by lemma 2.2.8,

E|X1|p =

∫ ∞
0

pyp−1P (|X1| > y)dy =

∫ 1

0

pyp−1P (|X1| > y)dy +

∫ ∞
1

pyp−1P (|X1| > y)dy

≤
∫ 1

0

pyp−1P (|X1| > y)dy + p

∫ ∞
1

P (|X1| > y)dy

≤
∫ 1

0

pyp−1dy + 2
∞∑
n=1

P (|X1| > n) since 1 < p < 2

≤
∫ 1

0

pyp−1dy + 2
∞∑
n=1

P (|X1| > n1/p) <∞

since both terms are finite.

Problem 16
Let X1mX2, ... be independent with EXn = 0, var(Xn) = σ2

n.
(i) Show that if

∑
n σ

2
n/n

2 <∞ then
∑

nXn/n converges a.s. and hence n−1
∑n

m=1Xm → 0
a.s.
(ii) Suppose

∑
σ2
n/n

2 =∞ and without loss of generality that σ2
n ≤ n2 for all n. Show that

there are independent random variables Xn with EXn = 0 and var(Xn) ≤ σ2
n so that Xn/n

and hence n−1
∑

m≤nXm does not converge to 0 a.s.

Solution If
∞∑
n=1

Xn

n
converges a.s.

then
1

n

n∑
m=1

Xm → 0 a.s.

by Kronecker’s lemma.

(ii)
By assumption, σn ≤ n. Let

P (Xn = n) = P (Xn = −n) =
σ2
n

2n2
, P (Xn = 0) = 1− σ2

n

n2

Now Xn are independent with E(Xn) = 0 and var(Xn) = σ2
n, but ∀0 < ε < 1,

P (|Xn|/n > ε) =
σ2
n

n2

Hence
∞∑
n=1

P (|Xn|/n > ε) =∞
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Therefore by the second Borel-Cantelli lemma,

P (|Xn|/n > ε i.o.) = 1 hence P (Xn/n→ 0) = 0

So Xn/n does not converge to 0 a.s. and hence n−1
∑

m≤nXm does not converge to 0 a.s.

Problem 17
Let X1, X2, ... be independent and let Sm,n = Xm+1 + ...+Xn. Then

P

(
max
m<j≤n

|Sm,j| > 2a

)
min
m<k≤n

P (|Sk,n| ≤ a) ≤ P (|Sm,n| > a)

Solution for m < k ≤ n, define

Ak,ε =
{
ω : max

m<j≤k−1
|Sm,j| ≤ 2ε, |Sm,k| > 2ε

}
Then Ak,ε is the event that the indicated maximum occurs on Sm,k and not Sm,j for

m < j < k. Thus these sets are disjoint and

{ω : max
m<j≤n

|Sm,j| > 2ε} =
n⋃

k=m+1

Ak,ε

Now note that for all m < k ≤ n,

Ak,ε
⋂
{ω : |Sk,n| ≤ ε} ⊂ {|Sm,n| > ε}

Hence
n⋃

k=m+1

(
Ak,ε

⋂
{ω : |Sk,n| ≤ ε}

)
⊂ {|Sm,n| > ε}

Taking the probability of both sides and using independence, we obtain:

n∑
k=m+1

P (Ak,ε)P ({ω : |Sk,n| ≤ ε}) ≤ P ({|Sm,n| > ε}) (2)

Finally, note that

n∑
k=m+1

P (Ak,ε)P ({ω : |Sk,n| ≤ ε}) ≥ min
m<k≤n

P ({ω : |Sk,n| ≤ ε})

(
n∑

k=m+1

P (Ak,ε)

)
= min
m<k≤n

P ({ω : |Sk,n| ≤ ε})P ({ω : max
m<j≤n

|Sm,j| > 2ε})

Combining this with (1), we obtain the desired inequality:

P ({ω : max
m<j≤n

|Sm,j| > 2ε}) min
m<k≤n

P ({ω : |Sk,n| ≤ ε}) ≤ P ({|Sm,n| > ε})
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Problem 18
Use the previous problem to prove the following: Let X1, X2, ... be independent and let
Sn = X1 + ...+Xn. If limn→∞ Sn exists in probability then it also exists a.s.

Solution Suppose Sn converges in probability. Then Sn is Cauchy in probability.
Therefore we have

min
m≤k,n

P (|Sn − Sk| ≤ ε)→ 1 as m→∞

Fix an m0 such that for all m ≥ m0,

min
m≤k,n

P (|Sn − Sk| ≤ ε) >
1

2

Now for all m0 ≤ m < n, we have

1

2
P
(
max

m<j,k≤n
|Sk − Sj| > 4ε

)
≤1

2
P
(
max
m<j≤n

|Sm − Sj| > 2ε
)

≤P
(
max
m<j≤n

|Sm − Sj| > 2ε
)
min
m<k≤n

P (|Sk − Sn| ≤ ε)

≤P (|Sn − Sm| > ε) −→ 0 as m,n→∞

where the last inequality is obtained by Problem 9. This implies that

P
(
max

m<j,k≤n
|Sk − Sj| > 4ε

)
−→ 0 as m,n→∞

Note that the max is always defined since we are taking the limit of finite values of m and n.
Since this is true for all ε > 0, the last line implies that the probability that Sn is not Cauchy
in probability is 0, hence the probability that Sn is Cauchy in probability is 1. Therefore Sn
converges almost surely.
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5 Random Walks

Problem 19
Let S0, S1, S2, ... be simple random walk on the integers (with Si = X1 + ... + Xi). Let
Fi = σ(X1, ..., Xi), be the natural filtration. Let a > 1 be an integer, and let T be the first
time i that |Si| = a.
(a) Show that T is a stopping time with respect to the natural filtration.
(b) Show that τ = T − 1 is not a stopping time with respect to the natural filtration.
(c) Show that nevertheless, Xτ+1, Xτ+2, ... is an i.i.d. sequence.
(d) On the other hand, show that the sequence in (c) is not independent of Fτ .

Solution (a) Let Ac = (−a, a). Note that

{T = n} = {S1 ∈ Ac, ..., Sn−1 ∈ Ac, Sn ∈ A} ∈ Fn

So T is a stopping time with respect to the natural filtration.

(b)
Note that

{τ = n} = {T − 1 = n} = {T = n+ 1} = {S1 ∈ Ac, ..., Sn ∈ Ac, Sn+1 ∈ A} 6∈ Fn

since Xn+1 6∈ Fn So τ is not a stopping time with respect to the natural filtration.

(c)
First note that XT has the same distribution as X1 since P (Sn = a−1) = P (Sn = −(a−1))
and P (Sn+1 = 1) = P (Sn+1 = −1). Next it’s clear that XT+1, XT+2, ... are independent since
they are not constrained (in the way XT−1 is) after existing (−a, a). Hence by theorem 4.1.3,
{XT+n, n ≥ 1} have the same distribution as the original sequence and are independent of
FT and in particular XT . Hence {XT , XT+1, ...} are i.i.d.

Problem 1 (d)
Let B = [0, 1] and let n > 1 be a positive integer. Noting that {τ = n} ∈ Fτ , we have:

P ({Xτ+1 ∈ B} ∩ {τ = n}) = P ({Xn+1 ∈ B} ∩ {S1 ∈ Ac, ..., Sn ∈ Ac, Sn+1 ∈ A}
= P ({S1 ∈ Ac, ..., Sn ∈ Ac, Sn+1 ∈ A}|{Xn+1 ∈ B})P ({Xn+1 ∈ B})
6= P ({S1 ∈ Ac, ..., Sn ∈ Ac, Sn+1 ∈ A})P ({Xn+1 ∈ B})

Since whether Sn+1 steps into A or not depends on Xn+1. Hence the sequence in question
1(c) is not independent of Fτ .

Problem 20
Using the same setup as the previous problem,
(a) show that there exists constants c > 0, b ∈ (0, 1) depending on a only so that P (T >
t) ≤ cbt for all t.
(b) Show that T has finite mean and variance
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Solution (a) By example 4.1.5. in Durrett, P (T > 2na) ≤ (1− 2−2a)n Letting t = 2na,
we have

P (T > t) ≤ [(1− 2−2a)
1
2a ]t

finally, b = (1− 2−2a)
1
2a ∈ (0, 1) since 1− 2−2a ∈ (0, 1).

(b)
Note that since (E(T ))2 < ∞, all we have to show is that E(T 2) < ∞. By lemma 2.2.8. in
Durrett,

E(T 2) =

∫ ∞
0

2t ∗ P (T > t)dt ≤
∞∑
1

2t[(1− 2−2a)
1
2a ]t <∞

since [(1− 2−2a)
1
2a ]t decreases exponentially since 0 < [(1− 2−2a)

1
2a ] < 1.

Problem 21
Let X1, X2, ... be i.i.d. with P (x1 = 1) = p > 1/2 and P (X1 = −1) = 1 − p, and let
Sn = X1 + ...+Xn. Let α = inf{m : Sm > 0} and β = inf{n : Sn < 0}.
(i) Show that P (α <∞ = 1 and P (β <∞) < 1.
(ii) If Y = inf Sn, then P (Y ≤ −k) = P (β <∞)k.
(iii) Apply Wald’s euqation to α ∧ n and let n→∞ to get Eα = 1/EX1 = 1/(2p− 1).

Solution (i)
Note E(X1) = p − (1 − p) = 2p − 1 > 0 since p > 1/2. Hence by the strong law of large
numbers, Sn → ∞. Hence sup Sn = ∞ and inf Sn > −∞. Finally, by exercise 4.1.9, this
corresponds to the case of P (α <∞) = 1 and P (β <∞) < 1.

(ii)
We argue by induction. For k = 1, the equality is clear because infSn ≤ −1 ⇐⇒ β <∞.
Assume the equality is true for k = n− 1. Note that

{inf Sm ≤ −n} = {M = inf{m : Sm ≤ −(n− 1)} <∞} ∩ {inf
j>M

(Sj + n− 1) < 0)} (3)

= {infSm ≤ −(n− 1)} ∩ {inf
j

(Sj + n− 1) < 0)} (4)

since (Sj + n− 1) ≥ 0 for j ≤M . Hence:

P ({inf Sm ≤ −n}) = P ({M = inf{m : Sm ≤ −(n− 1)} <∞})P ({inf
j>M

(Sj + n− 1) < 0)})

= P ({infSm ≤ −(n− 1)})P ({inf
j>M

(Sj + n− 1) < 0)})

= P ({infSm ≤ −(n− 1)})P (infSj < 0))

= P (β <∞)n−1P (β <∞) = P (β <∞)n

Where we used the independence of the sets on the right hand side of (1) in the first
equality above and theorem 4.1.4 for the second last equality above.
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(iii)
By Wald’s equation: E(α∧n)E(X1) = E(Sα∧n). From part (i) (the fact that P (α <∞) = 1),
we have that α ∧ n ↑ α. Hence Sα∧n → Sα = 1. By monotone convergence theorem:
E(α ∧ n)E(X1) ↑ E(α)E(X1) as n→∞. Hence By dominated convergence theorem:

1 = E(Sα)← E(Sα∧n) = E(α ∧ n)E(X1)→ E(α)E(X1) = E(α)(2p− 1)

So the equality follows trivially.

Problem 22 (optimal stopping)
Let Xn, n ≥ 1 be i.i.d. with EX+

1 <∞ and let

Yn = max
1≤m≤n

Xm − cn

That is, we are looking for a large value of X, but we have to pay c > 0 for each observation.
(i) Let T = inf{n : Xn > a}, p = P (Xn > a), and compute EYT .
(ii) Let α (possibly α < 0) be the unique solution of E(X1 − α)+ = c. Show that EYT = α
in the case and use the inequality

Yn ≤ α +
n∑

m=1

((Xm − α)+ − c)

for n ≥ 1 to conclude that if τ ≥ 1 is a stopping time with Eτ < ∞, then EYτ ≤ α.
The analysis above assumes that you to play at least once. If the optimal α < 0, then you
shouldn’t play at all.

Solution (i) First note that T has a geometric distribution with a chance of success of
p. Hence E(T ) = 1/p. Also note that since XT is the first Xn that is larger than a, it has
the same distribution as X1 conditional on X1 > a and max

1≤m≤T
Xm = XT . So

E(YT ) = E(XT )− cE(T ) = a+ E(X − a)+/p− c/p

(ii)
Plugging α = a in the above equation gives E(YT ) = α. Using the given inequality and
plugging τ for n, we get:

Yτ ≤ α +
τ∑

m=1

(X − α)+ − cτ

Hence Wald’s equation gives:

E(Yτ ) ≤ α + E(τ)E(X − α)+ − cE(τ) = α + E(τ)c− cE(τ) = α
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6 Martingales

Problem 23
Suppose X ≥ 0 and EX =∞. Show that there is a unique F -measurable Y with 0 ≤ Y ≤ ∞
so that ∫

A

XdP =

∫
A

Y dP for all A ∈ F

Solution
Letting YM = E(XM |F) as in the hint where XM = X ∧M , and letting M → ∞, we get
by theorem 5.1.2(c): YM = E(XM |F) ↑ some limit Y since XM ↑ X. By definition, Y is
F -measurable. Now for all A ∈ F , the conditional expectation definition gives:∫

A

X ∧MdP =

∫
A

YMdP

Taking the limit as M ↑ ∞, monotone convergence theorem then gives:∫
A

XdP =

∫
A

Y dP

Hence Y satisfies (i) and (ii) on page 189, hence the short uniqueness proof on page 190
applies and we are done.

Problem 24
Let var(X|F) = E(X2|F)− E(X|F)2. Show that

var(X) = E(var(X|F)) + var(E(X|F))

Solution
First note that E(E(X|F)) = E(X) and similarly, E(E(X2|F)) = E(X2). Hence

var(E(X|F)) = E((E(X|F))2)− (E(E(X|F)))2 = E((E(X|F))2)− (E(X))2

and

E(var(X|F)) = E(E(X2|F))− E((E(X|F))2) = E(X2)− E((E(X|F))2)

so finally:

E(var(X|F)) + var(E(X|F)) = E(X2)− (E(X))2 = var(X)

Problem 25
Show that if X and Y are random variables with E(Y |G) = X and EY 2 = EX2 <∞, then
X = Y a.s.
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Solution
First we compute:

E(XE(Y |G)) = E(E(XE(Y |G)|G)) = E((E(Y |G))2)

hence:

E((X − E(Y |G))2) = E(X2)− 2E(XE(Y |G)) + E((E(Y |G))2) = E(X2)− E((E(Y |G))2)

which we use to conclude:

0 = E(Y 2)− E(X2) = E(Y 2)− E(E(Y |G)) = E((Y − E(Y |G))2) = E((Y −X)2)

hence X = Y a.s. since (X − Y )2 = 0 a.s.

Problem 26
The result in the last problem implies that if EY 2 <∞ and E(Y |G) has the same distribution
as Y , then E(Y |G) = Y a.s. Prove this under the assumption that E|Y | <∞.

Solution
First, Jensen’s inequality implies that

|E(X|G)| ≤ E(|X||G)

The conditions in the problem imply that we have an equality in the above. Hence, when
E(X|G) ≥ 0, we have that E(X|G) = E(|X||G) a.s. and when E(X|G) < 0, we have that
−E(X|G) = −E(|X||G) a.s. Written more formally:

E(|X| −X;E(X|G) ≥ 0) = 0 and E(|X| −X;E(X|G) < 0) = 0

Hence sgn(X) = sgn(E(X|G)) a.s. Taking X = Y − c for any real c as in the hint and
doing the above again, we get that sgn(Y − c) = sgn(E(Y |G)− c) a.s. for all real c. Hence
Y = E(X|G) a.s.

Problem 27
(a) Let M be a martingale, with EM2

n finite for all n. Show that if i < j ≤ k < l then
E[(Ml −Mk)(Mj −Mi)] = 0
(b) Show directly (without use of martingale convergence theorem) that if supn≥0EM

2
n <∞,

then there is a random variable M∞ so that Mn →M∞ in L2. Also show that EM∞ = EM0

Solution
Let i < j ≤ k < `. Then by theorem 5.1.5:

E((M` −Mk)(Mj −Mi)) = E[E[(M` −Mk)(Mj −Mi)|Fj]]
= E[(Mj −Mi)E[(M` −Mk)|Fj]]
= E[(Mj −Mi)(Mj −Mj)] = 0
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Where we used

E[M`|Fj] = E[E[M`|F`−1]|Fj] = E[M`−1|Fj] = ... = E[Mj|Fj] = Mj

and similarly for Mk.

(b)
Since supn≥0E(M2

n) < ∞, there exists K such that E(M2
n) ≤ K for all n ≥ 0. Let Xn =

Mn −Mn−1 for n > 0.
Note trivially that: |2xy| ≤ x2 +y2, we have that |(x+y)2| ≤ x2 +y2 + |2xy| ≤ 2(x2 +y2).

Hence for all n ≥ 1, E[(Mn −M0)2] ≤ 2(E[M2
n] + E[M2

0 ]) ≤ 4K. Note also that for any
j 6= k, E(XjXk) = 0 by part a. Hence

E[(Mn −M0)2] = E[(Xn +Xn−1 + ...+X1)2] =
n∑
k=1

E[X2
k ]

since the E(XjXk) terms vanish. Combining these results, we get:

n∑
k=1

E[X2
k ] = E[(Mn −M0)2] ≤ 4K

∑n
k=1E[X2

k ] is increasing in n and bounded above, hence it converges. Therefore we have

E[X2
k ]

k→∞−→ 0. But this means that Mn is Cauchy, and hence converges to some M∞ in L2.
Now note that for all k > 0, by theorem 5.1.5:

E[Mk] = E[E[Mk|Fk−1]] = E[Mk−1] = ... = E[M0]

but convergence in L2 for random variables implies convergence in L1, hence

E[M∞] = lim
n
E[Mn] = lim

n
E[M0] = E[M0]

Problem 28 (Conditional expectation for L2 random variables)
(a) Let A be a subspace of L2(Ω,F , P ) that is closed in L2. show that for any X ∈ L2, there
exists a Y ∈ A that minimizes ||X − Y ||2. Show that X − Y is orthogonal to all elements of
A.
(b) Show that if G ⊂ F is a sub sigma-algebra, then A = L2(Ω,G, P ) is a closed subspace of
L2(ω,F , P )
(c) Show that in a the setup of (a) and (b), Y = E(X|G).

Solution
L2(Ω,F , P ) is a Hilbert space, hence this entire problem (including showing that X − Y is
orthogonal to all elements of A) follows directly from Hilbert’s projection theorem. I’m sure
you agree that there’s no point in copying it here.

(b)
Let f, g ∈ L2(Ω,G, P ), c ∈ R. Then cf + g ∈ G. Furthermore E((cf + g)2) ≤ 2E((cf)2) +

21



2E(g2) = 2c2E(f 2) + 2E(g2) < ∞. Hence cf + g ∈ L2(Ω,G, P ) and L2(Ω,G, P ) is a
subspace. To show closedness, let fn be a sequence in L2(Ω,G, P ) that converges to some
f ∈ L2(Ω,F , P ). Then by theorem 1.3.5 in Durrett, f = lim fn = lim sup fn ∈ G Hence
f ∈ L2(Ω,G, P ).

(c)
Let X ∈ L2(Ω,F , P ). Let Y = E[X|G] where G ⊂ F . By theorem 5.1.4 in Durrett
E|Y |2 ≤ E|X|2. Therefore Y ∈ L2. The rest follows directly from theorem 5.1.8 in Durrett
and we are done.

What follows is an alternative proof of Y ∈ L2 for “fun” (and not because I already wrote
it out before stumbling across the theorem): Suppose X is non-negative on the set A ∈ G.
Let B := {x ∈ A : Y (x) ≥ 0}. Then P (A \B) = 0 or else we would have that Y is negative
on a set C ∈ G of positive measure but then C ⊂ A and so 0 ≥

∫
C
XdP =

∫
C
Y dP < 0

which is a contradiction.

Now for A ∈ G Let A+ := {x ∈ A : X(x) ≥ 0}, A− := {x ∈ A : X(x) < 0},
A+ := {x ∈ A : Y (x) ≥ 0}, A− := {x ∈ A : Y (x) < 0}. Note that by the above paragraph:
P (A+ \ A+) = 0 and similarly with A− and A−. So we find that for all A ∈ G:∫

A

|X| =
∫
A

X+ −
∫
A

X− =

∫
A+

X −
∫
A−
X =

∫
A+

Y −
∫
A−
Y

=

∫
A+

Y −
∫
A−

Y =

∫
A

Y + −
∫
A

Y − =

∫
A

|Y |

Hence for all A ∈ G (and in particular A = Ω), we see that
∫
A
|X|2 =

∫
A
|Y |2.

Problem 29
Use regular conditional probability to get the condition Holder inequality from the uncon-
ditional one, i.e. show that if p, q ∈ (1,∞) with 1/p+ 1/q = 1, then

E(|XY ||G) ≤ E(|X|p|G)1/pE(|Y |q|G)1/q

Solution
To do this problem, first we do problem 5.1.14 (in Durret): if f = 1A then the problem
is true from definition. Now we just use the regular construction (simple functions by
linearity, then non-negative functions by monotone convergence, and finally general functions
by f = f+ − f−).

Now we just apply problem 5.1.14 and the usual Holder inequality after fixing ω:∫
|X(ω′)Y (ω′)|µ(ω, dx) ≤

(∫
|X(ω′)|µ(ω, dx)

)1/p(∫
|Y (ω′)|µ(ω, dx)

)1/q

Problem 30
Suppose f is superharmonic on Rd. Let ξ1, ξ2, ... be i.i.d. uniform on B(0, 1), and define Sn
by Sn = Sn−1 + ξn for n ≥ 1 and S0 = x. Show that Xn = f(Sn) is a supermartingale.
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Solution
Since f is superharmonic on Rd, it is continuous on Rd. Hence, since Sn ∈ B(x, n), and f
is bounded on B(x, n) by continuity, E(Xn) = E(f(Sn)) < ∞ for all n so condition (i) is
satisfied in the definition.

Letting Fn be the natural filtration on Sn, we see that Xn = f(Sn) is adapted to Fn by
Theorem 1.3.2. and continuity of f . Hence condition (ii) is satisfied.

Finally, we compute:

E(Xn+1|Fn) = E(f(Sn + ξn+1)|Fn) =
1

|B(Sn, 1)|

∫
B(Sn,1)

f(y)dy ≤ f(Sn) = Xn

and so condition (iii) is satisfied.

Problem 31
Give an example of a submartingale Xn so that X2

n is a supermartingale.

Solution
Let Xn = −1/n on [0, 1]. Then E(Xn) = −1/n is increasing but E((Xn)2) = 1/n2 is
decreasing.

Problem 32
Give an example of a martingale Xn with Xn → −∞ a.s.

Solution
Let P (ξn = −1) = 1 − 1/2nn, P (ξn = 1−1/2n

2n
) = 1/2n. Then E(ξn) = 0 for all n. Hence

Xn = ξ1 + ...+ ξn is clearly a martingale. Now

∞∑
n=1

P (ξn 6= −1) =
∞∑
n=1

1

2n
= 1 <∞

Hence, by Borel-Cantelli: P (ξn 6= −1 i.o.) = 0. Therefore Xn/n → −1 meaning Xn →
−∞.

Problem 33
Let Y1, Y2, ... be nonnegative i.i.d random variables with EYm = 1 and P (Ym = 1) < 1
(i) show that Xn =

∏
m≤n Ym defines a martingale.

(ii) Use theorem 5.2.9 and an arguement by contradiction to show that Xn → 0 a.s.
(iii) Use the strong law of large numbers to conclude that (1/n) logXn → c < 0.

Solution (i)
To check condition (i), just note that E(|Xn|) = E(Xn) =

∏
m≤nE(Ym) = 1. Condition (ii)

is met by letting Fn to be the natural filtration. To see condition (iii), just note that:

E(Xn+1|Fn) = E(XnYn+1|Fn) = XnE(Yn+1|Fn) = Xn
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(ii)
Since Yn are i.i.d and P (Yn 6= 1) < 1, choose δ > 0 such that P (|Yn − 1| > δ) = ε > 0. Since
Xn is non-negative, for all α > 0,

P (Xn ≥ α)P (|Yn − 1| > δ) ≤ P (Xn|Yn − 1| ≥ αε) = P (|Xn+1 −Xn| ≥ αε)→ 0

Where the convergence of the term on the right is given by the fact that Xn → X a.s.
by theorem 5.2.9. By assumption P (|Yn − 1| > δ) = ε > 0 for all n, so it must be that
P (Xn ≥ α)→ 0. Since this is true for all α > 0, we have that Xn → 0 in probability. Hence
there exists a subsequence Xnk → 0 a.s. But we already know that Xn → X a.s. by theorem
5.2.9. Hence Xn → 0 a.s.

(iii)
First by Jensen’s inequality: E(log(Yk)) ≤ log(E(Yk)) = 0, however since P (Ym = 1) < 1,
we have a strict inequality. So now by the SLLN:

1

n
log(Xn) =

1

n

n∑
k=1

log(Yk)→ E(log(Y1)) < 0

Problem 34
Suppose yn > −1 for all n and

∑
|yn| <∞. Show that

∏∞
m=1(1 + ym) exists.

Solution
This is equivalent to showing

∑∞
m=1 log(1 + ym) < ∞ i.e.

∑∞
m=k log(1 + ym)

k→∞−→ 0.∑∞
m=1 |ym| <∞ means that |yk|

k→∞−→ 0 and hence
∑∞

m=1 |ym|2 <∞. Note that for |y| < 1/2:

log(1 + y) =
∞∑
k=1

(−1)k+1y
k

k
≥ y − y2

2

( ∞∑
k=0

2−k
)

= y − y2

Also note trivially that log(1+y) ≤ y. Hence for large enough N , and m ≥ N , |ym| < 1/2,
so:

∞∑
k=N

(yk − y2
k) ≤

∞∑
k=N

log(1 + yk) ≤
∞∑
k=N

|yk|

taking the limit as N →∞ we see that
∑∞

m=k log(1 + ym)
k→∞−→ 0 and so we are done.

Problem 35
Let Xn and Yn be positive integrable and adapted to Fn. Suppose

E(Xn+1|Fn) ≤ (1 + Yn)Xn

with
∑
Yn < ∞. a.s. Prove that Xn converges a.s. to a finite limit by finding a closely

related supermartingale.
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Solution
From the previous problem,

∏∞
m=1(1 + Ym) exists. Let

Zn =
Xn∏n−1

m=1(1 + Ym)

Note that just as in problem 1,

E|Xn| ≤ E

[∣∣∣∣X1

n−1∏
m=1

(1 + Ym)

∣∣∣∣]
Hence E|Zn| ≤ E|Xn| <∞. Since Zn ∈ Fn:

E[Zn+1|Fn] ≤ E[Xn+1|Fn]∏n
m=1(1 + Ym)

≤ Xn∏n−1
m=1(1 + Ym)

= Zn

And since Ym, Xn are positive, Zn is a positive submartingale. Hence theorem 5.2.9 implies
that Zn

n→∞−→ Z∞ a.s. Now since
∏∞

m=1(1 + Ym) exists, we find

Xn = Zn

n−1∏
m=1

(1 + Ym)
n→∞−→ Z∞

∞∏
m=1

(1 + Ym) a.s.

Problem 36
Use the random walks in problem 30 to conclude that in d ≤ 2, nonnegative superharmonic
functions must be constant. The example f(x) = |x|2−d show that this is false in d > 2.

Solution
From problem 30 above, we showed that Xn is a submartingale. Since f is non-negative,
Xn = f(Sn) ≥ 0. Hence by theorem 5.2.9, Xn converges to some X∞ almost surely. Since f
is superharmonic, it is continuous. Suppose f is not constant. Then there exists constants
a < b such that A := {f < a}, B := {f > b} are non-empty. Since Sn has finite variance
and mean of x = S0, and d ≤ 2, by theorem 4.2.7 (for d = 1) aor theorem 4.2.8 (for d = 2),
Sn visits A and B infinitely often. Hence lim inf f(Sn) ≤ a < b ≤ lim sup f(Sn) which
contradicts that f is superharmonic i.e. that the second derivative vanishes.

Problem 37
Let Xn be a martingale atabped to Fn. Let F∞ be the sigma field generated by the union
of Fn. Show that the following are equivalent:
1. {Xn} is uniformly integrable
2. Xn converges in L1 to X
3. Xn converges in L1 and almost surely to X 4. Xn = E(X|Fn) for some random variable
X ∈ F∞.

For the last three, show that the X have to be the same.
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Solution
(1 ⇒ 3): {Xn} uniformly integrable gives supE|Xn| < ∞ for all n, hence by martingale
convergence theorem, Xn → X almost surely. Theorem 5.5.2 implies L1 convergence.
(3⇒ 2): trivial
(2⇒ 4): This follows immediately from Lemma 5.5.5
(4⇒ 1): This follows immediately from theorem 5.5.1

If Xn converges in L1 to X∞, then there’s a subsequence that converges a.s. to X̃, but
since every subsequence converges to X∞, X∞ = X̃ a.s. and in L1. Finally, from theorem
5.5.7, Xn = [X̃∞|Fn] → [X̃∞|F∞] = X̃∞ a.s., and in L1. But Xn → X∞ a.s. and in L1.
Hence X∞, X̃, and X̃∞ are the same.

Problem 38
Let Z1, Z2, .. be i.i.d. with E|Zi| < ∞, let θ be an independent random variable with finite
mean, and let Yi = Zi + θ. If Zi is normal(0, 1) then in statistical terms, we have a sample
from a normal population with variance 1 and unknown mean. The distribution of θ is
called the prior distribution, and P (θ ∈ ·|Y1, ..., Yn) is called the posterior distribution after
n observations. Show that E(θ|Y1, ..., Yn)→ θ a.s.

Solution
Let Fn = σ(Y1, ..., Yn) and F∞ = σ(∪Fn). Note that by the SLLN,

1

n

n∑
k=1

Yk = θ +
1

n

n∑
k=1

Zk
n→∞−→ θ + 0

Hence θ ∈ F∞. Then by theorem 5.5.7:

E[θ|Fn]→ E[θ|F∞] = θ

Problem 40
Let Ω = [0, 1), Ik,n = [k2−n, (k + 1)2−n), and Fn = σ(Ik,n : 0 ≤ k < 2n). f is said to
be Lipschitzcontinuous if |f(t) − f(s)| ≤ K|t − s| for 0 ≤ s, t < 1. Show that Xn =
(f((k + 1)2−n)− f(k2−n))/2−n on Ik,n defines a martingale, Xn → X∞ a.s. and L1, and

f(b)− f(a) =

∫ b

a

X∞(ω)dω

Solution
Let fk,n := (f((k + 1)2−n) − f(k2−n))/2−n so that Xn = fk,n on Ik,n. The trick is to note
that Ik,n = I2k,n+1 ∪ I2k+1,n=1. and P (I2k,n+1) = P (I2k+1,n=1) = P (Ik,n)/2. Hence

E(Xn+1|Fn) =
f2k,n+1 + f2k+1,n+1

2
= fk,n = Xn

And soXn is a martingale. Next, since t, s ∈ [0, 1), |t−s| < 1 and |f(t)−f(s)| ≤ K|t−s| < K.
Hence 0 ≤ |Xn| ≤ K for all n. Therefore Xn is uniformly integrable and therefore converges
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to X∞ a.s. and in L1. Finally, note that lemma 5.5.5 gives us that E(X∞|Fn) = Xn for all
n. Hence since Ik,n ∈ Fn, for a = k2−n and b = (k + 1)2−n:∫ b

a

X∞ =

∫ b

a

E(X∞|Fn) =

∫ b

a

Xn =

∫ b

a

Xn = f(b)− f(a)

By combining integrals over these sets, we can obtain this results for a = k2−n and b = j2−n

for 0 ≤ k < j ≤ 2n. Now for any a, b we can take sequences {ki}, {ni}, {ji} such that
ki2
−ni → a and ji2

−ni → b and use the continuity of f (since f is Lipschitz continuous), to
obtain the result for all a and b.

Problem 41
Let Ω = [0, 1), Ik,n = [k2−n, (k + 1)2−n), and Fn = σ(Ik,n : 0 ≤ k < 2n).Suppose f is inte-
grable on [0, 1). E(f |Fn) is a step function and→ f in L1. From this it follows immediately
that if ε > 0, there is a step function g on [0, 1] with

∫
|f − g|dx < ε.

Solution
E[f |Fn] is a step function by example 5.1.3 since Ik,n are disjoint for o ≤ k < 2n. Since
E[f |Fn] is uniformly integrable, it converges in L1 to E[f |F∞] = f since f ∈ F∞.

Problem 42 (exercise 5.5.6 in Durret)
Let Zn be a branching process with offspring distribution pk (see end of section 5.3 for
definitions). Use exercise 5.5.5 in Durret to show that if p0 > 0 then P (limnZn = 0or∞) = 1.

Solution
Suppose p0 > 0, then P (Zn+1 = 0|Z1, ..., Zn) ≥ pk0 > 0 on {Zn ≤ k}. Note that if ZN = 0
for some N , then Zk = 0 for all k > N . Hence {Zn = 0 for some n ≥ 1} = {limn Zn = 0}.
Hence

P ({lim
n
Zn = 0} ∪ {lim

n
Zn =∞}) = 1

By Durrett exercise 5.5.5.

Problem 43
Show that if Fn ↑ F∞ and Yn → Y in L1 then E(Yn|Fn)→ E(Y |F∞ in L1.

Solution
First note that

E(|E[Yn|Fn]− E[Y |Fn]|) = E(|E[Yn − Y |Fn]|) ≤ E(E(|Yn − Y | |Fn)) = E(|Yn − Y |)→ 0

By Jensen’s and since Yn → Y in L1. Also Note that

E(|E[Y |Fn]− E[Y |F ]|)→ 0

By theorem 5.5.7. Hence By the triangle inequality:

E(|E[Yn|Fn]− E[Y |F∞]|) ≤ E(|E[Yn|Fn]− E[Y |Fn]|) + E(|E[Y |Fn]− E[Y |F ]|)→ 0
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Problem 44
Let T be a stopping time so that for some b, ε > 0 and every n we have P (T ≤ n+b|Fn) > ε.
Show that ET <∞.

Solution
First note that for all n, ε < P (T ≤ n + b|Fn) = E(1{T≤n+b}|Fn). Now since {T > n} =
{T ≤ n}c ∈ Fn, for all n we have:

p(n < T ≤ n+ b) =

∫
{n<T≤n+b}

1dP =

∫
{n<T}

1{T≤n+b}dP

=

∫
{n<T}

E(1{T≤n+b}|Fn)dP

=

∫
{n<T}

P (T ≤ n+ b|Fn)dP

≥ εP (T > n)

So

P (T > n) ≤ 1

ε
P (n < T ≤ n+ b)

Hence since T > 0

ET = E|T | =
∞∑
n=0

P (T > n) ≤ 1

ε

∞∑
n=0

P (n < T ≤ n+ b) ≤ b

ε

∞∑
n=0

P (n < T ≤ n+ 1)

=
b

ε

∞∑
n=0

P (T = n+ 1) ≤ b

ε
<∞

Problem 45
Prove that if {Xi}i∈I are uniformly integrable and so are {Yj}j∈j, then so are {Xi+Yj}i∈I,j∈j

Solution
We want to show that for all ε > 0 there exists M > 0 such that

sup
(i,j)∈I×J

E(|Xi + Yj|; |Xi + Yj| > M) < ε

Since {Xi}i∈I and {Yj}j∈J are uniformly integrable, for any ε0 > 0 there exists M0 > 0 such
that

sup
i∈I

E(|Xi|; |Xi| ≥M0/2) < ε0, sup
j∈J

E(|Yj|; |Yj| ≥M0/2) < ε0

Note that

E(max(|Xi|, |Yj|); |Xi| ≥M0/2) < 2ε0, E(max(|Xi|, |Yj|); |Yj| ≥M0/2) < 2ε0

Hence

E(|Xi + Yj|; |Xi + Yj| > M0) ≤ E(2 max(|Xi|, |Yj|); |Xi + Yj| > M0)

≤ 2E(max(|Xi|, |Yj|); {|Xi| ≥M0/2} ∪ {|Yj| ≥M0/2})
≤ 2E(max(|Xi|, |Yj|); |Xi| ≥M0/2) + 2E(max(|Xi|, |Yj|); |Yj| ≥M0/2)

≤ 4ε0 + 4ε0 = 8ε0
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Therefore given any ε > 0, choose ε0 = ε/8 and follow the above recipe.

Problem 46
Show that if Y is a random variable with values in [−c, c] and EY = 0, then EeλY ≤
cosh(λc) ≤ eλ

2c2/2.

Solution
Since Y ranges from −c to c, so does

Y =

(
Y + c

2c

)
c+

(
1− Y + c

2c

)
(−c)

Also note that Y+c
2c

ranges from 0 to 1. Hence by convexity of the exponential and the fact
that E(Y ) = 0:

EeλY ≤ E

[(
Y + c

2c

)
eλc +

(
1− Y + c

2c

)
e−λc

]
=

1

2
eλc + e−λc − 1

2
e−λc = cosh(λc)

To show the other inequality, we expand the Taylor series of both sides.

cosh(λc) =
∞∑
n=0

(λc)2n

(2n)!
≤

∞∑
n=0

(λc)2n

n!2n
=
∞∑
n=0

(λ
2c2

2
)n

n!
= eλ

2c2/2

since (2n)! ≥ n!2n for all n ≥ 0.
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7 Markov Chains

Problem 46
Show that a finite aperiodic Markov chain is irreducible if and only if there is n0 so that for
al n ≥ n0 and x, y ∈ S we have pn(x, y) > 0.

Solution
Suppose there exists n0 such that for all n ≥ n0, and x, y ∈ S, we have pn(x, y) > 0. Hence for
each x, y ∈ S, ρx,y = Px(Ty <∞) > 0. Hence the Markov chain is irreducible. Now suppose
that the Markov chain is irreducible. Given x, y ∈ S, we have ρx,y = Px(Ty <∞) > 0, hence
there exists nx,y such that pnx,y(x, y) > 0. Note that since the Markov chain is aperiodic,
for any m > 0, y ∈ S, we have pm(y, y) > 0. Hence for N = m + nx,y > nx,y, we have that
pN(x, y) = pm+nx,y(x, y) ≥ pnx,y(x, y)pm(y, y) > 0. Therefore pN(x, y) > 0 for all N > nx,y.
Since the Markov chain is finite, we can let n0 = maxx,y∈S{nx,y}.

Problem 47
Let Xn be a finite irreducible Markov chain started at x. Let T0 = 0 and let Ti be the ith
positive time visiting x.
(a) Show that the finite sequences Si = (XTi , XTi+1, ..., XTi+1−1 are i.i.d. as i varies.
(b) Let Ny

t be the number of visits to y by time t. Show that for all y we have Ny
t /t converges

a.s.
(c) Show that (Ny

t −mt)/σt converges to a standard normal random variable in distribution
for the right choice of mt and σt.

Solution (a)
SinceXn is finite irreducible, it is recurrent. First note that Si = S1◦θTi−1

. SinceX(Tk−1) = x
a.s. Hence

Px(S1 ◦ θTk−1
= Si|FTi−1

) = Px(S1 = Si)

Hence Si is independent of FTi−1
and hence S1, ..., Si−1. The result follows by induction on

i.

(b)
By part a, Xn is recurrent. Hence the result follows directly from Theorem 6.6.1 in Durrett.

(c)
Let Rk = Tk − Tk−1, R0 = 0. Then

Tk
Ny
Tk

=
Tk
k

=
R1 + ...+Rk

k
→ ER1

By the strong law of large numbers. For Tk−1 ≤ t < Tk, we have:

1

ER1

← k

k − 1

k − 1

Tk−1

=
k

Tk−1

≥ Ny
t

t
≥ k

Tk
→ 1

ER1
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Hence Tt/t→ ER1. So if Tk ≤ t < Tk+1, by CLT:

Ny
t −

R1+...+R
N
y
t

ER1

σ(R1)
√
Ny
t

ER1

=
Ny
Tk
− R1+...+Rk

ER1

σ(R1)
√
k

ER1

=
k − R1+...+Rk

ER1

σ(R1)
√
k

ER1

=
kER1 −R1...−Rk

σ(R1)
√
k

⇒ N (0, 1)

Problem 48
Let D be a finite set of size n and let Yi be independent uniform random variables taking
values in D. Let Nt be the number of different values of Yi up to time t, and let Ti be so
that T1 + ...+ Tk is the first time t so that Nt = k.
(a) Show that Tk are independent and Tk has Geometric distribution with parameter 1/k
(b) Let α ∈ (0, 1]. Compute the asymptotics of the mean and variance of T1 + ... + Tn−bnαc
as n→∞
(c) Now let Xn be a lazy random walk on the d-dimensional hypercube started at (0, ..., 0).
Show that there exists ε > 0 so that the random vector Xbεd log dc has at least d2/3 zero entries
with probability tending to 1 as d→∞
(d) Show that the mixing time of Xn is at least εd log d for large enough d.

Solution (a)
If Nt = k then the there are n − k values left in our set. So our chance of success on the
first (and each) attempt is n−k+1

n
. Since the attempts are independent, we have a geometric

distribution and the Tk are independent.

(b)
Since Tk has a geometric distribution, ET1 = 1, ET2 = 1

(n−1)/n
= n

n−1
, ... , ETn−bnαc =

1
(n−(n−bnαc)+1)/n

= n
1+bnαc . Hence

n−bnαc∑
k=1

ETk = 1 +
n

n− 1
+ ...+

n

1 + bnαc

= n

(
1

n
+

1

n− 1
+ ...+

1

1 + bnαc

)
= n

(
1 +

1

2
+ ...+

1

n

)
− n

(
1 +

1

2
+ ...+

1

1 + bnαc

)
∼ n log(n)− n log(1 + bnαc)

= n log(
n

1 + bnαc
)

∼ n log(
n

bnαc
)

∼ n(1− α) log(n)
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Similarly, the variance of a geometric distribution with parameter p is (1− p)/p2. Hence

V ar(T1 + ...+ Tn−bnαc) = V ar(T1) + ...+ V ar(Tn−bnαc)

= 0 + n

n−bnαc∑
k=2

(k − 1)

(n− k + 1)2

∼ n

∫ n−bnαc

2

x− 1

(n− x+ 1)2
dx ∼ n

∫ n−bnαc

2

x

(n− x)2
dx

= n

∫ (bnαc

n−2

x− n
x2

dx

= n

[
ln(bnαc)− ln(n− 2) + n

(
1

bnαc
− 1

n− 2

)]
∼ n2

bnαc
∼ n2−α

(c)
Let Yn = T1 + ... + Tn−bnαc, ε = 1/6, α = 2/3. Then by part b, for large d, E(Yd) ≥ d

6
log d

and V ar(Yd) ≤ 2d2−2/3. Hence for large d, we have:

P (Yd ≤
d

6
log d) ≤ P (|Yd − EYd| ≤

d

6
log d− EYd)

= P (|Yd − EYd| ≥ (1/3− 1/6)d log d) = P (|Yd − EYd| ≥
d

6
log d)

Hence by Chebyshev’s inequality:

P (Yd ≤
d

6
log d) ≤ P (|Yd − EYd| ≥

d

6
log d)

≤ V arYd

(d
6

log d)2
≤ 100

d2/3(log d)2
→ 0

Hence P (Yd ≥ d
6

log d)→ 1 as d→∞.

(d)
Since the stationary distribution is clearly uniform, we expect half of the entries to be 0. But
for large d, we expect to have at least d2/3 zero entries at time εd log d. Hence the expected

total variation is bounded by

∣∣∣∣d2/3−d/2d

∣∣∣∣ = |d−1/3 − 1/2| → 1/2 and so the mixing time is at

least εd log d since the value above does not converge to a time less than half.

Problem 49
Let Xt be a biased lazy random walk on the n-cycle. Namely, with probability 1/2 Xt stays
where it is, with probability p/2 it moves to the right and otherwise it moves to the left.
Assume p ∈ (1/2, 3/4). Show that the mixing time of Xt is at most 100n2.
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Solution
Since I missed Lecture, I will use a similar resource to the lecture notes (Markov Chains and
Mixing Times by Levin, Peres, Wilmer). Consider the lazy random walk on {1, ..., n}. where
we have 1/2 chance of staying in the same place. Let τ be the hitting time of 1 or n. Then
by proposition 2.1 in Levin,

Ek(τ) ≤ k(n− k) ≤ n2

4

since the chance to step in any direction is less than half (i.e. that of a simple random walk).
Note that by differentiating, the middle part above is maximized when k = n/2 hence we get
the right hand term. Now we just construct a coupling (Xt, Yt) of two particles performing
the lazy biased random walks on the n-cycle. They must not take steps at the same time so
that they don’t jump over each other. When they meet, they make identical moves. They
way they move could be dictated by the following rule: a fair coin is flipped. If the result
is heads, the biased lazy random walk on Xt is iterated by one step. Otherwise the same is
done for Yt. If we let Dt be the clockwise distance of the particles and τ be the hitting time
of this random walk to the points 0 or n (i.e. when the points collide), just as in example
5.3.1 in Levin, using the above and corollary 5.3 in Levin, we obtain:

d(t) ≤ max
x,y∈Zn

P (τ > t) ≤
maxx,y E|x−y|(τ)

t
≤ n2

4t

The right side is equal to 1/4 for t = n2. Hence tmix ≤ n2.

Problem 50
Let ξ1, ξ2, ... be i.i.d. ∈ {1, 2, .., N} and taking each value with probability 1/N . Show that
Xn = |{ξ1, ..., ξn}| is a markov chain and compute its transition probability.

Solution
The probability of adding a new value (at time n+1 depends on the number of values we have
seen at time n. Hence Xn is a Markov chain. The transition probabilities are p(j, j) = j/N
since there is a j/N chance that ξN+1 ≤ j, p(j, j + 1) = 1− j/N , p(i, j) = 0 otherwise.

Problem 51 (Durrett Exercise 6.3.6)
Let h(x) = Px(τA < τB). Suppose AB̂ = ∅, S − (A∪B) is finite, and Px(τA∪B <∞) > 0 for
all x ∈ S − (A ∪B).
(i) Show that

h(x) =
∑
y

p(x, y)h(y) for x 6∈ A ∪B

(ii) Show that if h satisfies the equation above, then h(X(n ∧ τA∪B)) is a martingale
(iii) use this and exercise 6.3.5 in Durret to conclude that h(x) = Px(τA < τB) is the only
solution of the above equality that is 1 on A and 0 on B.

Solution
We take the expected value for the case when x 6∈ A∪B (and therefore 1(τA<τb)◦θ1 = 1(τA<τb)),
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we get:

Px(τA < τB) = Ex(1(τA<τb) ◦ θ1) = Ex(Ex(1(τA<τb) ◦ θ1|F1)) = Exh(X1)

(ii)
Let N = τA∪B. Note that X(n+1)∧N = Xn∧N on {N ≤ n} ∈ Fn. Hence by exercise 1.1 in
ch.5,

Eh(Xn+1∧N |Fn) = E(h(Xn∧N |Fn) = h(Xn∧N)

Note that X(n+1)∧N = Xn+1 on {N > n} ∈ Fn. Hence by the Markov property, part (i) and
exercise 1.1 in ch.5,

Eh(Xn∧N |Fn) = E(h(Xn+1|Fn) = E(h(X1 ◦ θn|Fn)

= EXnh(X1) = h(Xn) = h(Xn∧N)

(iii)
By exercise 6.3.5, N <∞ a.s. Also note that h is bounded since S− (A∪B) is finite. Hence
by the bounded convergence theorem and Martingale property:

h(x) = Exh(Xn∧N)→ EXh(XN) = Px(τA < τB)

Problem 52 (Durrett Exercise 6.3.10)
Let τA = inf{n ≥ 0 : Xn ∈ A} and g(x) = ExτA. Suppose that S − A is finite and for each
x ∈ S − A, Px(τA <∞) > 0.
(i) Show that

g(x) = 1 +
∑
y

p(x, y)g(y) forx 6∈ A

(ii) Show that if g satisfies the above equality, g(X(n ∧ τA)) + n ∧ τA is a martingale
(iii) Use this to conclude that g(x) = ExτA is the only solution to the above equality that is
0 on A.

Solution (i)
Note that τA ◦ θ1 = τA − 1 if x 6∈ A. Just as in the above, we take expected value:

g(x)− 1) = Ex(τA − 1) = Ex(τA ◦ θ1) = ExEx(τA ◦ θ1|F1) = Exg(X1)

(ii)
Just as in the previous problem, we consider the two sets. First, on {τA ≤ n} ∈ Fn, we have
that

g(Xn+1∧τA) + (n+ 1) ∧ τA = g(Xn∧τA) + n ∧ τA
so by exercise 1.1 in ch.5,

Ex(g(Xn+1∧τA) + (n+ 1) ∧ τA|Fn) = Ex(g(Xn∧τA) + n ∧ τ |Fn) = g(Xn∧τA) + n ∧ τA
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On {τA > n} ∈ Fn, we have that

g(Xn+1∧τA) + (n+ 1) ∧ τA = g(Xn+1) + n+ 1

so by exercise 1.1 in ch.5 and part (i):

Ex(g(Xn+1∧τA) + (n+ 1) ∧ τA|Fn) = Ex(g(Xn+1) + n+ 1|Fn) = g(Xn)− 1 + n+ 1

= g(Xn) + n

(iii)
By exercise 6.3.5, Py(τA > kN) ≤ (1− ε)k ∀y 6∈ A so that EyτA <∞. Just as in the previous
question, any solution is bounded since S − A is finite. Hence by monotone, bounded
convergence theorems and the martingale property:

g(x) = Ex(g(Xn∧τA) + n ∧ τA)→ ExτA

Problem 53 (Durrett Exercise 6.4.9)
f is said to be superharmonic if f(x) ≥

∑
y p(x, y)f(y), or equivalently if f(Xn is a su-

permartingal. Suppose p is irreducible. Show that if p is recurrent if and only if every
nonnegative superharmonic function is constant.

Solution
We start by using a contrapositive arguement. Suppose the chain is transient. Hence for
some x. Py(Ty <∞) < 1 and f(x) = Px(Ty <∞) is a non constant superharmonic function.
Now suppose f ≥ 0 is superharmonic. Let f(Xn) = Yn. Then Yn is a supermartingale, so Yn
converges to a limit Y a.s. If Xn is recurrent then for any x, Xn = x infinitely often, hence
f(x) = Y and this function is a constant.
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8 Brownian Motion

Problem 54
Show that for a Brownian motion B
(a) for all t ≥ 0 we have P (tis a local maximum) = 0
(b) almost surely local maxima exist
(c) almost surely, there exist times t1, t2 ∈ (0, 1), D∗B(t) ≥ 0 and D∗B(t) ≤ 0. Here

D∗f(t) = lim sup
h↓0

f(t+ h)− f(t)

h

and D8 is the same with lim inf.

Solution
By the discussion in page 13 of Morters and Peres: Browniaon Motion, it suffices to consider
a standard Brownian motion B. For t ≥ 0, let Yt0(t) = B(t + t0) − B(t0) and let Xt0(t) =
tY (1

t
). Then by theorem 2.3 (Markov property) and theorem 1.9 (time), Yt0 , Xt0 are standard

Brownian motions. Now suppose t0 is a local max of B. Then for sufficiently small t > 0,
Yt0(t) ≤ 0 and hence for sufficiently large t > 0, Xt0(t) ≤ 0 and so lim supt→∞Xt0(t) ≤ 0.
So {t0 : t0 is a local max for B} ⊂ {lim supt→∞Xt0(t) ≤ 0}. But by proposition 1.23,
lim supt→∞Xt0(t) = +∞ almost surely. Hence

P{t0 : t0 is a local max for B}) ≤ P ({lim sup
t→∞

Xt0(t) ≤ 0}) = 0

(b)
Consider the interval I = (0, 1). We claim that there exists a local maximum in I. If this
were not the case, then either B is monotone increasing on I, or there exists a t0 ∈ I such
that B is monotone decreasing on (0, t0) and increasing on (t0, 1). However, since these are
open intervals, we can fit non-degenerate closed interval in each one. But by proposition
1.22, almost surely, B is not monotone on any closed interval. Hence the probability of both
the cases above is 0, and so almost surely, B has a local max.

(c)
By a symmetric argument as in part (b), almost surely, B has a local min on (0, 1). Let
t0, t1 ∈ (0, 1) be a local max and min of B respectively. Then for sufficiently small h > 0,
B(t0 + h)−B(t0) ≤ 0 and B(t1 + h)−B(t1) ≥ 0 Hence:

D∗B(t0) = lim sup
h↓0

B(t0 + h)−B(t0)

h
≤ 0, D∗B(t1) = lim inf

h↓0

B(t1 + h)−B(t1)

h
≥ 0

Problem 55
Show that, for every point x ∈ R, there exists a two-sided Brownian motion (B(t) : t ∈ R)
with B(0) = x which has continuous paths, independent increments, and the property that
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for all t ∈ R and h > 0, the increments B(t + h) − B(t) are normally distributed with
expectation zero and variance h.

Solution
Let B1, B2 be independent standard Brownian motions (so they have the same distribution).
Let B̃1 = B1 + x/2, B̃2 = B2 + x/2. Then B̃1, B̃2 are Brownian motions with the same
distributions as B1. Define B̃1(t) = B̃1(0), B̃2(t) = B̃2(0) for negative t. Now let E(t) =
B̃2(−t). Then E(−·) has the same distribution as B1(·). Finally, let B(t) = B̃1(t) + E(t).
Then B(0) = B1(0) + x/2 + B2(0) + x/2 = x. The continuity of the paths follows from the
fact that the sum of 2 continuous paths is continuous. The increments are independent since
B̃1 and E are independent, and they each have independent increments. Finally, note that
h > 0 so to check the last condition, we have a 3 cases. Case (i) t ≥ 0. Then

B(t+ h)−B(t) = B̃1(t+ h)− B̃1(t) + B̃2(−t− h)− B̃2(−t)
= B1(t+ h) + x/2−B1(t)− x/2 +B2(0) + x/2−B2(0)− x/2
= B1(t+ h)−B1(t)

which is normally distributed with mean 0 and variance h. Next we have case (ii) t < 0 and
t+ h < 0. Then

B(t+ h)−B(t) = B̃1(t+ h)− B̃1(t) + B̃2(−t− h)− B̃2(−t)
= B1(0) + x/2−B1(0)− x/2 +B2(t+ h) + x/2−B2(t)− x/2
= B2(t+ h)−B2(t)

which is normally distributed with mean 0 and variance h. Next we have case (iii) t < 0
and t+ h ≥ 0. Then

B(t+ h)−B(t) = B̃1(t+ h)− B̃1(t) + B̃2(−t− h)− B̃2(−t)
= B1(t+ h) + x/2−B1(0)− x/2 +B2(0) + x/2−B2(t)− x/2
= B1(t+ h)−B2(t)

which is normally distributed with mean 0 and variance h since B1 and B2 have the same
distribution and are both Brownian motions.

Problem 56
Use the time inversion formula and properties of random walks to show that almost surely
b takes on both positive and negative values in every nonempty interval (0, 1)

Solution
By time inversion B(t)

d
= tB(1/t). Hence we have B(t) takes positive and negative values

for t ∈ (0, ε) almost surely iff tB(1/t) takes positive and negative values for t ∈ (0, ε) almost
surely. But by corollary 1.11 and Chung-Fuchs theorem, B(t) is recurrent and therefore so is
B(1/t) for t ∈ (0, ε). In particular, B(1/t) visits positive and then negative values infinitely
many time for t ∈ (0, ε). Hence so does tB(1/t) and consequently B(t).

Problem 57
Recall that a random vector X has (mean zero) multivariate normal distribution if it can be
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written as MZ for Z a vector with independent standard normal entries and M a possibly
rectangular deterministic matrix.
(a) Show that the distribution of a standard normal vector is determined by its covariances
EXiXj

(b) Show that if X, Y are independent standard normal then X−Y , X+Y are independent
normals of variance 2.

Solution (a)
Let X = MZ as in the problem where Z = (Z1, ..., Zn) with independent standard normal
entries (i.e. Zi ∼ N (0, 1)). Let σi = 1 be the variance of these entries and I = Σ = E[ZZt]
be the covariance matrix of Z and Φ = E[XX t] be the covariance matrix of X. Then using
our knowledge of the characteristic function:

ϕ(λ) = E[eiλX ] =
n∏
k=1

E[eiλkXk ] = e
−1
2
λtMΣMtλ

= e
−1
2
λtME[ΣΣt]Mtλ = e

−1
2
λtME[ZZt]Mtλ

= e
−1
2
λtE[MZZtMt]λ = e

−1
2
λtΦλ

Hence the distribution of X is determined by it’s covariance.

(b)

ϕX+Y (λ) = ϕX(λ)ϕY (λ) = e−λ
2/2e−λ

2/2 = e−2λ2/2

ϕX−Y (λ) = ϕX(λ)ϕ−Y (λ) = e−λ
2/2e−(−λ)2/2 = e−2λ2/2

Hence X + Y , X − Y ∼ N (0, 2). Their independence is a basic lemma in Durrett.

Problem 58
(a) Show that for any continuous function f on (0,∞), if limh↓0 f(h) = 0 over rational h
then the same is true over real h
(b) Define R(t) = tB(1/t) for t > 0. We have checked that R(t) is continuous on (0,∞) and
has the same distribution as B on this interval. Use part (a) to show that limh→0R(h) = 0

Solution (a)
Let hn ↓ 0 be rational, kn ↓ 0 be irrational. Suppose f(hn) → 0 and f(kn) → c 6= 0. Then
for for ε = c/100, for any δ > 0, we can choose N > 0 s.t. for all n > 0, |hn − kn| < δ,
|f(hn)− 0| < c/100 and |f(kn)− c| < c/100. But now |f(hn)− f(kn)| ≥ c− c/50 > ε which
contradicts continuity of f .

(b)
Let hn ↓ 0 be rational just as in part a. Then by page 27 of Morters and Peres, limn→∞R(hn) =
0 almost surely. And since R is almost surely continuous on (0,∞), limt→0R(t) = 0 almost
surely by part (a).

Problem 59
(a) Use the SMP and problem 56 to show that for every t a.s. if T is the first time after t
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so that B(T ) = 0, then there are zeros of B in the interval (T, T + ε) for all ε > 0.
(b) Let Z be the set of zeros of BM . Use part (a) for all rational t to conclude that a.s.
every point in Z is a limit point of Z. (It follows that Z is uncountable)

Solution (a)
By problem 56, T is almost surely finite. Hence by the SMP,X(t) = {B(T+t)−B(T ) : t ≥ 0}
is a standard Brownian motion independent of F+(T ) (defined in Morters and Peres). And
so by problem 3 again, there are zeros of X(t) in every interval t ∈ (0, ε), ε > 0. But hence
this means There are zeros of B(T + t) − B(T ) = B(T + t) + 0 in every interval t ∈ (0, ε),
ε > 0. So there are zeros of B(t) in every interval t ∈ (T, T + ε), ε > 0.

(b)
Suppose z ∈ Z (so B(z) = 0) and suppose z doesn’t have a limit from the left (or else we are
done already). Then by part (a), there exists zn such that B(zn) = 0 and zn ∈ (z, z+ 1/2n).
But now zn → z and we are done.
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